Neferine inhibits proliferation and collagen synthesis induced by high glucose in cardiac fibroblasts and reduces cardiac fibrosis in diabetic mice
نویسندگان
چکیده
Cardiac fibrosis is a common pathological process accompanying diabetes mellitus. In this report, we studied the effects of neferine (a major bisbenzylisoquinline alkaloid derived from lotus embryos) on cardiac fibrosis induced by diabetes mellitus, as well as the underlying molecular pathways. In vivo, type 1 diabetes mellitus was induced in mice by administering streptozotocin. Diabetic mice were treated with neferine through oral gavage, and cardiac function was assessed using echocardiography. Total collagen deposition was assessed by Masson's trichrome and Picrosirius staining. In vitro, cardiac fibroblasts were cultured in normal or high-glucose medium with or without neferine. Neferine attenuated left ventricular dysfunction and remodeling and reduced collagen deposition in diabetic mice. In vitro, neferine inhibited cardiac fibroblast proliferation, migration, and differentiation into myofibroblasts. In addition, neferine reduced high-glucose-induced collagen production and inhibited TGF-β1-Smad, ERK and p38 MAPK signaling activation in cardiac fibroblasts. These results suggest that neferine may have antifibrogenic effects in diabetes-related cardiac fibrosis.
منابع مشابه
Irisin inhibits high glucose‐induced endothelial‐to‐mesenchymal transition and exerts a dose‐dependent bidirectional effect on diabetic cardiomyopathy
Emerging evidence indicates that irisin provides beneficial effects in diabetes. However, whether irisin influences the development of diabetic cardiomyopathy (DCM) remains unclear. Therefore, we investigated the potential role and mechanism of action of irisin in diabetes-induced myocardial dysfunction in mice. Type 1 diabetes was induced in mice by injecting streptozotocin, and the diabetic m...
متن کاملH3 relaxin inhibits the collagen synthesis via ROS‐ and P2X7R‐mediated NLRP3 inflammasome activation in cardiac fibroblasts under high glucose
Excessive production of reactive oxygen species (ROS) and P2X7R activation induced by high glucose increases NLRP3 inflammasome activation, which contributes to the pathogenesis of diabetic cardiomyopathy. Although H3 relaxin has been shown to inhibit cardiac fibrosis induced by isoproterenol, the mechanism has not been well studied. Here, we demonstrated that high glucose (HG) induced the coll...
متن کاملN-Acetyl Cysteine improves the diabetic cardiac function: possible role of fibrosis inhibition
BACKGROUND Diabetic cardiomyopathy is one of the leading causes of death in diabetes mellitus (DM) patients. This study aimed to explore the therapeutic implication of N-acetyl-L-cysteine (NAC, an antioxidant and glutathione precursor) and the possible underlying mechanism. METHODS Thirty five 12-week-old male C57BL/6 mice were included. Twenty-five diabetic mice were induced by intraperitone...
متن کاملEffect of Eight Weeks of Aerobic Training on Some Myocardial Fibrosis Indices in Cardiac Muscle of Diabetic Rats
Background. Myocardial fibrosis is identified as a major side effect of Diabetes Mellitus on the heart. Some bio-markers including the ratio of matrix metalloproteinases and their inhibitors in collagen synthesis and collagen degradation are clinically useful in the diagnosis and identification of myocardial fibrosis. In addition, regular aerobic exercise training is one of the major and non-ph...
متن کاملTargeted Inhibition of Calpain Reduces Myocardial Hypertrophy and Fibrosis in Mouse Models of Type 1 Diabetes
OBJECTIVE Recently we have shown that calpain-1 activation contributes to cardiomyocyte apoptosis induced by hyperglycemia. This study was undertaken to investigate whether targeted disruption of calpain would reduce myocardial hypertrophy and fibrosis in mouse models of type 1 diabetes. RESEARCH DESIGN AND METHODS Diabetes in mice was induced by injection of streptozotocin (STZ), and OVE26 m...
متن کامل